3.1.26 \(\int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx\) [26]

3.1.26.1 Optimal result
3.1.26.2 Mathematica [B] (verified)
3.1.26.3 Rubi [A] (warning: unable to verify)
3.1.26.4 Maple [B] (verified)
3.1.26.5 Fricas [A] (verification not implemented)
3.1.26.6 Sympy [F]
3.1.26.7 Maxima [F(-2)]
3.1.26.8 Giac [F]
3.1.26.9 Mupad [B] (verification not implemented)

3.1.26.1 Optimal result

Integrand size = 25, antiderivative size = 83 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx=-\frac {\arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{a d \sqrt {e}}-\frac {\text {arctanh}\left (\frac {\sqrt {e} (1+\cot (c+d x))}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d \sqrt {e}} \]

output
-arctan((e*cot(d*x+c))^(1/2)/e^(1/2))/a/d/e^(1/2)-1/2*arctanh(1/2*(1+cot(d 
*x+c))*e^(1/2)*2^(1/2)/(e*cot(d*x+c))^(1/2))/a/d*2^(1/2)/e^(1/2)
 
3.1.26.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(283\) vs. \(2(83)=166\).

Time = 0.52 (sec) , antiderivative size = 283, normalized size of antiderivative = 3.41 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx=-\frac {8 e^{3/2} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )+4 \left (-e^2\right )^{3/4} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt [4]{-e^2}}\right )-2 \sqrt {2} e^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )+2 \sqrt {2} e^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )-4 \left (-e^2\right )^{3/4} \text {arctanh}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt [4]{-e^2}}\right )-\sqrt {2} e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )+\sqrt {2} e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{8 a d e^2} \]

input
Integrate[1/(Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x])),x]
 
output
-1/8*(8*e^(3/2)*ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]] + 4*(-e^2)^(3/4)*ArcT 
an[Sqrt[e*Cot[c + d*x]]/(-e^2)^(1/4)] - 2*Sqrt[2]*e^(3/2)*ArcTan[1 - (Sqrt 
[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]] + 2*Sqrt[2]*e^(3/2)*ArcTan[1 + (Sqrt[2] 
*Sqrt[e*Cot[c + d*x]])/Sqrt[e]] - 4*(-e^2)^(3/4)*ArcTanh[Sqrt[e*Cot[c + d* 
x]]/(-e^2)^(1/4)] - Sqrt[2]*e^(3/2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] - S 
qrt[2]*Sqrt[e*Cot[c + d*x]]] + Sqrt[2]*e^(3/2)*Log[Sqrt[e] + Sqrt[e]*Cot[c 
 + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(a*d*e^2)
 
3.1.26.3 Rubi [A] (warning: unable to verify)

Time = 0.63 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.98, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4057, 3042, 4015, 221, 4117, 27, 73, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \cot (c+d x)+a) \sqrt {e \cot (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right ) \sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4057

\(\displaystyle \frac {\int \frac {a-a \cot (c+d x)}{\sqrt {e \cot (c+d x)}}dx}{2 a^2}+\frac {1}{2} \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\tan \left (c+d x+\frac {\pi }{2}\right ) a+a}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}+\frac {1}{2} \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 4015

\(\displaystyle \frac {1}{2} \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx-\frac {\int \frac {1}{2 a^2-(\cot (c+d x) a+a)^2 \tan (c+d x)}d\frac {\cot (c+d x) a+a}{\sqrt {e \cot (c+d x)}}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{2} \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx-\frac {\text {arctanh}\left (\frac {\sqrt {e} (a \cot (c+d x)+a)}{\sqrt {2} a \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d \sqrt {e}}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {\int \frac {1}{a \sqrt {e \cot (c+d x)} (\cot (c+d x)+1)}d(-\cot (c+d x))}{2 d}-\frac {\text {arctanh}\left (\frac {\sqrt {e} (a \cot (c+d x)+a)}{\sqrt {2} a \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d \sqrt {e}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {1}{\sqrt {e \cot (c+d x)} (\cot (c+d x)+1)}d(-\cot (c+d x))}{2 a d}-\frac {\text {arctanh}\left (\frac {\sqrt {e} (a \cot (c+d x)+a)}{\sqrt {2} a \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d \sqrt {e}}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\int \frac {1}{\frac {\cot ^2(c+d x)}{e}+1}d\sqrt {e \cot (c+d x)}}{a d e}-\frac {\text {arctanh}\left (\frac {\sqrt {e} (a \cot (c+d x)+a)}{\sqrt {2} a \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d \sqrt {e}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\arctan \left (\frac {\cot (c+d x)}{\sqrt {e}}\right )}{a d \sqrt {e}}-\frac {\text {arctanh}\left (\frac {\sqrt {e} (a \cot (c+d x)+a)}{\sqrt {2} a \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d \sqrt {e}}\)

input
Int[1/(Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x])),x]
 
output
ArcTan[Cot[c + d*x]/Sqrt[e]]/(a*d*Sqrt[e]) - ArcTanh[(Sqrt[e]*(a + a*Cot[c 
 + d*x]))/(Sqrt[2]*a*Sqrt[e*Cot[c + d*x]])]/(Sqrt[2]*a*d*Sqrt[e])
 

3.1.26.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4015
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[-2*(d^2/f)   Subst[Int[1/(2*c*d + b*x^2), x], x, (c 
- d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && 
 EqQ[c^2 - d^2, 0]
 

rule 4057
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)/((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[1/(c^2 + d^2)   Int[(a + b*Tan[e + f*x])^m 
*(c - d*Tan[e + f*x]), x], x] + Simp[d^2/(c^2 + d^2)   Int[(a + b*Tan[e + f 
*x])^m*((1 + Tan[e + f*x]^2)/(c + d*Tan[e + f*x])), x], x] /; FreeQ[{a, b, 
c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d 
^2, 0] &&  !IntegerQ[m]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 
3.1.26.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(303\) vs. \(2(68)=136\).

Time = 0.04 (sec) , antiderivative size = 304, normalized size of antiderivative = 3.66

method result size
derivativedivides \(-\frac {2 e^{2} \left (\frac {\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{2 e^{2}}+\frac {\arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{2 e^{\frac {5}{2}}}\right )}{d a}\) \(304\)
default \(-\frac {2 e^{2} \left (\frac {\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{2 e^{2}}+\frac {\arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{2 e^{\frac {5}{2}}}\right )}{d a}\) \(304\)

input
int(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x,method=_RETURNVERBOSE)
 
output
-2/d/a*e^2*(1/2/e^2*(1/8/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/ 
4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e* 
cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*co 
t(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))- 
1/8/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2) 
*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/ 
2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*ar 
ctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)))+1/2/e^(5/2)*arctan((e* 
cot(d*x+c))^(1/2)/e^(1/2)))
 
3.1.26.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 321, normalized size of antiderivative = 3.87 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx=\left [\frac {\sqrt {2} \sqrt {-e} \arctan \left (\frac {\sqrt {2} \sqrt {-e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} {\left (\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) + 1\right )}}{2 \, {\left (e \cos \left (2 \, d x + 2 \, c\right ) + e\right )}}\right ) - \sqrt {-e} \log \left (\frac {e \cos \left (2 \, d x + 2 \, c\right ) - e \sin \left (2 \, d x + 2 \, c\right ) + 2 \, \sqrt {-e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right ) + e}{\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) + 1}\right )}{2 \, a d e}, \frac {\sqrt {2} \sqrt {e} \log \left (\sqrt {2} \sqrt {e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} {\left (\cos \left (2 \, d x + 2 \, c\right ) - \sin \left (2 \, d x + 2 \, c\right ) - 1\right )} + 2 \, e \sin \left (2 \, d x + 2 \, c\right ) + e\right ) - 4 \, \sqrt {e} \arctan \left (\frac {\sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{\sqrt {e}}\right )}{4 \, a d e}\right ] \]

input
integrate(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x, algorithm="fricas")
 
output
[1/2*(sqrt(2)*sqrt(-e)*arctan(1/2*sqrt(2)*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c 
) + e)/sin(2*d*x + 2*c))*(cos(2*d*x + 2*c) + sin(2*d*x + 2*c) + 1)/(e*cos( 
2*d*x + 2*c) + e)) - sqrt(-e)*log((e*cos(2*d*x + 2*c) - e*sin(2*d*x + 2*c) 
 + 2*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*sin(2*d*x + 
2*c) + e)/(cos(2*d*x + 2*c) + sin(2*d*x + 2*c) + 1)))/(a*d*e), 1/4*(sqrt(2 
)*sqrt(e)*log(sqrt(2)*sqrt(e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2* 
c))*(cos(2*d*x + 2*c) - sin(2*d*x + 2*c) - 1) + 2*e*sin(2*d*x + 2*c) + e) 
- 4*sqrt(e)*arctan(sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))/sqrt(e) 
))/(a*d*e)]
 
3.1.26.6 Sympy [F]

\[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx=\frac {\int \frac {1}{\sqrt {e \cot {\left (c + d x \right )}} \cot {\left (c + d x \right )} + \sqrt {e \cot {\left (c + d x \right )}}}\, dx}{a} \]

input
integrate(1/(e*cot(d*x+c))**(1/2)/(a+a*cot(d*x+c)),x)
 
output
Integral(1/(sqrt(e*cot(c + d*x))*cot(c + d*x) + sqrt(e*cot(c + d*x))), x)/ 
a
 
3.1.26.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx=\text {Exception raised: ValueError} \]

input
integrate(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.26.8 Giac [F]

\[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx=\int { \frac {1}{{\left (a \cot \left (d x + c\right ) + a\right )} \sqrt {e \cot \left (d x + c\right )}} \,d x } \]

input
integrate(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x, algorithm="giac")
 
output
integrate(1/((a*cot(d*x + c) + a)*sqrt(e*cot(d*x + c))), x)
 
3.1.26.9 Mupad [B] (verification not implemented)

Time = 12.78 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.95 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx=-\frac {\mathrm {atan}\left (\frac {\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{a\,d\,\sqrt {e}}-\frac {\sqrt {2}\,\mathrm {atanh}\left (\frac {12\,\sqrt {2}\,e^{9/2}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{12\,e^5\,\mathrm {cot}\left (c+d\,x\right )+12\,e^5}\right )}{2\,a\,d\,\sqrt {e}} \]

input
int(1/((e*cot(c + d*x))^(1/2)*(a + a*cot(c + d*x))),x)
 
output
- atan((e*cot(c + d*x))^(1/2)/e^(1/2))/(a*d*e^(1/2)) - (2^(1/2)*atanh((12* 
2^(1/2)*e^(9/2)*(e*cot(c + d*x))^(1/2))/(12*e^5*cot(c + d*x) + 12*e^5)))/( 
2*a*d*e^(1/2))